Materials (Sep 2021)

Novel Approach to the Treatment of Gypseous Soil-Induced Ettringite Using Blends of Non-Calcium-Based Stabilizer, Ground Granulated Blast-Furnace Slag, and Metakaolin

  • Khaled Ibrahim Azarroug Ehwailat,
  • Mohd Ashraf Mohamad Ismail,
  • Ali Muftah Abdussalam Ezreig

DOI
https://doi.org/10.3390/ma14185198
Journal volume & issue
Vol. 14, no. 18
p. 5198

Abstract

Read online

Gypseous soil is one type of expansive soil that contains a sufficient amount of sulphate. Cement and lime are the most common methods of stabilizing expansive soil, but the problem is that lime-treated gypseous soil normally fails in terms of durability due to the formation of ettringite, a highly deleterious compound. Moisture ingress causes a significant swelling of ettringite crystals, thereby causing considerable damage to structures and pavements. This study investigated the suitability of various materials (nano–Mg oxide (M), metakaolin (MK), and ground granulated blast-furnace slag (GGBS)) for the stabilization of gypseous soil. The results showed soil samples treated with 20% M-MK, M-GGBS, and M-GGBS-MK to exhibit lower swelling rates (<0.01% change in volume) compared to those treated with 10% and 20% of lime after 90 days of curing. However, soil samples stabilized with 10% and 20% binder of [(M-MK), (M-GGBS), and (M-GGBS-MK)] exhibited higher strengths after 90 days of soaking (ranging from 0.96–12.8 MPa) compared to those stabilized with 10% and 20% lime. From the morphology studies, the SEM and EDX analysis evidenced no formation of ettringite in the samples stabilized with M-MK-, M-GGBS-, and M-GGBS-MK. These results demonstrate the suitability of M-MK, M-GGBS, and M-GGBS-MK as effective agents for the stabilization of gypseous soil.

Keywords