eLife (May 2020)

Intelligent classification of platelet aggregates by agonist type

  • Yuqi Zhou,
  • Atsushi Yasumoto,
  • Cheng Lei,
  • Chun-Jung Huang,
  • Hirofumi Kobayashi,
  • Yunzhao Wu,
  • Sheng Yan,
  • Chia-Wei Sun,
  • Yutaka Yatomi,
  • Keisuke Goda

DOI
https://doi.org/10.7554/eLife.52938
Journal volume & issue
Vol. 9

Abstract

Read online

Platelets are anucleate cells in blood whose principal function is to stop bleeding by forming aggregates for hemostatic reactions. In addition to their participation in physiological hemostasis, platelet aggregates are also involved in pathological thrombosis and play an important role in inflammation, atherosclerosis, and cancer metastasis. The aggregation of platelets is elicited by various agonists, but these platelet aggregates have long been considered indistinguishable and impossible to classify. Here we present an intelligent method for classifying them by agonist type. It is based on a convolutional neural network trained by high-throughput imaging flow cytometry of blood cells to identify and differentiate subtle yet appreciable morphological features of platelet aggregates activated by different types of agonists. The method is a powerful tool for studying the underlying mechanism of platelet aggregation and is expected to open a window on an entirely new class of clinical diagnostics, pharmacometrics, and therapeutics.

Keywords