IEEE Access (Jan 2022)

Video Analysis and Rule-Based Reasoning for Driving Maneuver Classification at Intersections

  • Zakaria Charouh,
  • Amal Ezzouhri,
  • Mounir Ghogho,
  • Zouhair Guennoun

DOI
https://doi.org/10.1109/ACCESS.2022.3169140
Journal volume & issue
Vol. 10
pp. 45102 – 45111

Abstract

Read online

We propose a system for monitoring the driving maneuver at road intersections using rule-based reasoning and deep learning-based computer vision techniques. Along with detecting and classifying turning movements online, the system also detects violations such as ignoring STOP signs and failing to yield the right-of-way to other drivers. There is no distinction between temporarily and permanently stopped vehicles in the majority of frameworks proposed in the literature. Therefore, to conduct an accurate right-of-way study, permanently stopped vehicles should be excluded not to confound the results. Moreover, we also propose in this work a low-cost Convolutional Neural Network (CNN)-based object detection framework able to detect moving and temporally stopped vehicles. The detection framework combines the reasoning system with background subtraction and a CNN-based object detector. The obtained results are promising. Compared to the conventional CNN-based methods, the detection framework reduces the execution time of the object detection module by about 30% (i.e., 54.1 instead of 75ms/image) while preserving the same detection reliability. The accuracy of trajectory recognition is 95.32%, that of the zero-speed detection is 96.67%, and the right-of-way detection was perfect.

Keywords