Journal of Power Sources Advances (Oct 2023)
Free-standing SnSe@C nanofiber anode material for low-temperature lithium-ion batteries
Abstract
A novel approach to develop a low-temperature lithium-ion battery (LIB) based on tin selenide (SnSe) and carbon (C) nanofibers as the active electrode material has been successfully achieved. The SnSe@C nanofiber anode exhibited excellent electrochemical properties, such as high capacity and good rate capability. The anode maintained a consistent charge capacity of ∼923 mAh g−1 at a current rate of 0.1 A g−1 over 100 cycles at room temperature. Furthermore, investigated for the first time at low temperatures, the SnSe@C nanofiber anode exhibited superior capacity (∼430 mAh g−1 at −20 °C) compared to conventional graphite electrode (∼25 mAh g−1 at −20 °C). The proposed SnSe@C nanofiber anode demonstrated a great potential to be applied for developing next-generation LIBs with improved low-temperature performance.