Journal of Fungi (Jun 2022)

Comparative Analysis of Transcriptomes of <i>Ophiostoma novo-ulmi</i> ssp. <i>americana</i> Colonizing Resistant or Sensitive Genotypes of American Elm

  • Martha Nigg,
  • Thais C. de Oliveira,
  • Jorge L. Sarmiento-Villamil,
  • Paul Y. de la Bastide,
  • Will E. Hintz,
  • Sherif M. Sherif,
  • Mukund Shukla,
  • Louis Bernier,
  • Praveen K. Saxena

DOI
https://doi.org/10.3390/jof8060637
Journal volume & issue
Vol. 8, no. 6
p. 637

Abstract

Read online

The Ascomycete Ophiostoma novo-ulmi threatens elm populations worldwide. The molecular mechanisms underlying its pathogenicity and virulence are still largely uncharacterized. As part of a collaborative study of the O. novo-ulmi-elm interactome, we analyzed the O. novo-ulmi ssp. americana transcriptomes obtained by deep sequencing of messenger RNAs recovered from Ulmus americana saplings from one resistant (Valley Forge, VF) and one susceptible (S) elm genotypes at 0 and 96 h post-inoculation (hpi). Transcripts were identified for 6424 of the 8640 protein-coding genes annotated in the O. novo-ulmi nuclear genome. A total of 1439 genes expressed in planta had orthologs in the PHI-base curated database of genes involved in host-pathogen interactions, whereas 472 genes were considered differentially expressed (DEG) in S elms (370 genes) and VF elms (102 genes) at 96 hpi. Gene ontology (GO) terms for processes and activities associated with transport and transmembrane transport accounted for half (27/55) of GO terms that were significantly enriched in fungal genes upregulated in S elms, whereas the 22 GO terms enriched in genes overexpressed in VF elms included nine GO terms associated with metabolism, catabolism and transport of carbohydrates. Weighted gene co-expression network analysis identified three modules that were significantly associated with higher gene expression in S elms. The three modules accounted for 727 genes expressed in planta and included 103 DEGs upregulated in S elms. Knockdown- and knockout mutants were obtained for eight O. novo-ulmi genes. Although mutants remained virulent towards U. americana saplings, we identified a large repertoire of additional candidate O. novo-ulmi pathogenicity genes for functional validation by loss-of-function approaches.

Keywords