Scientific Reports (Jul 2017)

Avian reovirus p17 and σA act cooperatively to downregulate Akt by suppressing mTORC2 and CDK2/cyclin A2 and upregulating proteasome PSMB6

  • Wei-Ru Huang,
  • Pei-I Chi,
  • Hung-Chuan Chiu,
  • Jue-Liang Hsu,
  • Brent L. Nielsen,
  • Tsai-Ling Liao,
  • Hung-Jen Liu

DOI
https://doi.org/10.1038/s41598-017-05510-x
Journal volume & issue
Vol. 7, no. 1
pp. 1 – 19

Abstract

Read online

Abstract Although we have shown that avian reovirus (ARV) p17-mediated inhibition of Akt leads to induction of autophagy, the precise mechanisms remain largely unknown. This study has identified a specific mechanism by which ARV coordinately regulates the degradation of ribosomal proteins by p17-mediated activation of E3 ligase MDM2 that targets ribosomal proteins and by σA-mediated upregulation of proteasome PSMB6. In addition to downregulating ribosomal proteins, p17 reduces mTORC2 assembly and disrupts mTORC2-robosome association, both of which inactivate mTORC2 leading to inhibition of Akt phosphorylation at S473. Furthermore, we discovered that p17 binds to and inhibits the CDK2/cyclin A2 complex, further inhibiting phosphorylation of Akt S473. The negative effect of p17 on mTORC2 assembly and Akt phosphorylation at S473 is reversed in cells treated with insulin or overexpression of CDK2. The carboxyl terminus of p17 is necessary for interaction with CDK2 and for induction of autophagy. Furthermore, p17-mediated upregulation of LC3-II could be partially reversed by overexpression of CDK2. The present study provides mechanistic insights into cooperation between p17 and σA proteins of ARV to negatively regulate Akt by downregulating complexes of mTORC2 and CDK2/cyclin A2 and upregulating PSMB6, which together induces autophagy and cell cycle arrest and benefits virus replication.