Cancer Cell International (Apr 2018)
Down-regulation of STAT3 induces the apoptosis and G1 cell cycle arrest in esophageal carcinoma ECA109 cells
Abstract
Abstract Background Signal transducer and activator of transcription 3 (STAT3) is persistently activated in a wide variety of epithelial cancers. Aberrant activity of STAT3 correlates with tumor growth, invasion and metastasis, which makes it a potential therapeutic target of cancer. To explore the biological role of STAT3 in esophageal cancer, we used small hairpin RNA to knockdown the expression of the STAT3 gene in the esophageal carcinoma ECA109 cell line and the cell apoptosis, cell cycle and cell migration were investigated. Methods The cell apoptosis was tested using DNA ladder, mitochondrial membrane potential assay, TUNEL assay, annexin V-PI staining. Cell cycle phases were estimated using flow cytometry analysis. The mRNA and proteins related to apoptosis and cell cycle were examined by quantitative real-time polymerase chain reaction (qRT-PCR) and Western blot, respectively. And cell migration was investigated by in vitro Transwell assay. The data were analyzed with two-sample Student’s t test and ANOVA followed by the LSD post hoc test. Results Our results showed that knockdown of STAT3 in ECA109 cells induced noticeable apoptotic morphological changes like cell shrinkage, apoptotic vacuoles, membrane blebbing time-dependently. In addition, DNA ladder, TUNEL assay, Annexin V-PI staining and declined level of cleaved Caspase-3 indicated that down-regulation of STAT3 could induce apoptosis in ECA109 cells. Flow cytometry analysis displayed the induction of G1-phase cell cycle arrest of ECA109 cells by STAT3 decreasing, consistent with the descend of c-Myc and cyclin D1 in protein levels. Furthermore, STAT3 knockdown suppressed the expression of matrix metalloproteinases-9, sushi domain containing 2 and urokinase plasminogen activator in ECA109 cells and inhibited cell migration ability. Conclusions Knockdown of STAT3 could induce the apoptosis and G1 cell cycle arrest in esophageal carcinoma ECA109 cells, and inhibit the migration ability of cells as well.
Keywords