Journal of Electrical and Computer Engineering (Jan 2021)

Research and Implementation of Fast-LPRNet Algorithm for License Plate Recognition

  • Zhichao Wang,
  • Yu Jiang,
  • Jiaxin Liu,
  • Siyu Gong,
  • Jian Yao,
  • Feng Jiang

DOI
https://doi.org/10.1155/2021/8592216
Journal volume & issue
Vol. 2021

Abstract

Read online

The license plate recognition is an important part of the intelligent traffic management system, and the application of deep learning to the license plate recognition system can effectively improve the speed and accuracy of recognition. Aiming at the problems of traditional license plate recognition algorithms such as the low accuracy, slow speed, and the recognition rate being easily affected by the environment, a Convolutional Neural Network- (CNN-) based license plate recognition algorithm-Fast-LPRNet is proposed. This algorithm uses the nonsegment recognition method, removes the fully connected layer, and reduces the number of parameters. The algorithm—which has strong generalization ability, scalability, and robustness—performs license plate recognition on the FPGA hardware. Increaseing the depth of network on the basis of the Fast-LPRNet structure, the dataset of Chinese City Parking Dataset (CCPD) can be recognized with an accuracy beyond 90%. The experimental results show that the license plate recognition algorithm has high recognition accuracy, strong generalization ability, and good robustness.