Scientific Reports (Nov 2021)
Galerkin finite element study for mixed convection (TiO2–SiO2/water) hybrid-nanofluidic flow in a triangular aperture heated beneath
Abstract
Abstract Fluidity and thermal transport across the triangular aperture with lower lateral inlet and apply placed at the vertical outlet of the chamber which filled with efficient TiO2–SiO2/water hybrid nanofluid under the parametrical influence. Several parameters are tested like the numbers of Hartmann ( $$0 \le Ha \le 100$$ 0 ≤ H a ≤ 100 ), Richardson ( $$0 \le Ri \le 5$$ 0 ≤ R i ≤ 5 ), and Reynolds ( $$10 \le Re \le 1000$$ 10 ≤ R e ≤ 1000 ) were critiqued through streamlines, isotherms, and Nusselt number ( $$Nu$$ Nu ). Numerical model has to be developed and solved through the Galerkin finite element method (GFEM) by discretized with 13,569 triangular elements optimized through grid-independent analysis. The Hartmann number ( $$Ha$$ Ha ), exerts minimal impact over the flow and thermal aspects while the other parameters significantly manipulate the physical nature of the flowing and thermal aspects behaviors.