PLoS ONE (Jan 2024)
Cryptic diploid lineage of Betula ermanii at its southern boundary populations in Japan.
Abstract
Polyploidy is thought to enable species diversification and adaptation to extreme environments. Resolving the ecological differences between a taxon's ploidy levels would therefore provide important insights into local adaptation and speciation. The genus Betula includes many polyploids, but estimates of their phylogenetic relationships and evolutionary history are uncertain because of cryptic lineages and species. As one of the southern boundary populations of Betula ermanii in Japan has been shown to have distinctive genetic characteristics and traits, the differences in ploidy levels between three southern boundary and various other Japanese B. ermanii populations were investigated using flow cytometry. Leaf and seed morphologies were also compared. Apart from individuals in southern boundary populations, all those sampled were tetraploid. Individuals from the southern boundary populations were mostly diploid, apart from a few from lower altitude Shikoku populations, which were tetraploid. Leaf and seed morphologies differed between tetraploids and diploids. Diploid individuals were characterized by leaves with a heart-shaped base and many leaf teeth, and seeds with relatively longer wings. The diploid populations could be considered a cryptic relict lineage of B. ermanii, and there is a possibility that this lineage is a diploid ancestor of B. ermanii and a relict population of the Sohayaki element. Further investigation of the Japanese Betula phylogenetic relationships would enable an informed discussion of taxonomic revisions.