Heliyon (Oct 2023)

HOXC10 promotes esophageal squamous cell carcinoma progression by targeting FOXA3 and indicates poor survival outcome

  • Xiaoting He,
  • Huiyu Wang,
  • Runjie Wang,
  • Yuting Li,
  • Suqing Li,
  • Xiufeng Cao,
  • Junying Xu

Journal volume & issue
Vol. 9, no. 10
p. e21056

Abstract

Read online

Background: Esophageal cancer is one of the most unknown and deadliest cancers in the world. Although recent studies have identified some mutations linked to the development of squamous cell carcinoma of the esophagus (ESCC), the specific role of HomeoboxC10 (HOXC10) in the pathogenesis still requires further investigation. Methods: Agilent mRNA single-channel gene expression was employed to identify genome-wide gene signatures in ESCC. These signatures were also verified using qRT-PCR, immunohistochemical staining as well as Western blot. The biological functions of HOXC10 were further investigated through cellular studies conducted on ESCC cells. Survival analysis was conducted utilizing the Kaplan-Meier method. The GEPIA database and the STRING website were utilized to predict the potential targets that bind to HOXC10. Co-immunoprecipitation assays were performed to investigate the binding interaction between HOXC10 and Forkhead Box A3 (FOXA3). Animal models were established to analyze the effects of HOXC10 silencing on tumorigenesis in vivo. Results: The expression levels of HOXC10 mRNA were found to be upregulated in ESCC. Survival analysis revealed a significant association between abnormally elevated levels of HOXC10 mRNA and an unfavorable prognosis in patients with ESCC. In vitro studies revealed that the knockdown of HOXC10 expression resulted in the inhibition of the proliferation, invasion, and migrating ability of ESCC cells through the upregulation of FOXA3. Furthermore, tumor-bearing mouse models studies demonstrated that HOXC10 through knockdown techniques significantly suppressed ESCC tumor growth. HOXC10 was found to enhance the activation of the MAPK signaling pathway by regulating FOXA3 in ESCC cells. Conclusion: These results support a key role for HOXC10 in the tumorigenesis of ESCC by upregulating FOXA3 via the MAPK pathway and highlight its potential as a promising diagnostic and prognostic marker for ESCC.

Keywords