Energies (Oct 2024)
Utility-Scale Grid-Connected Microgrid Planning Framework for Sustainable Renewable Energy Integration
Abstract
Microgrids have emerged as a crucial focus in power engineering and sustainable energy research, with utility-scale microgrids playing a significant role in both developed and developing countries like the Philippines. This study presents a comprehensive framework for utility-scale microgrid planning, emphasizing the sustainable integration of renewable energy resources to the distribution grid. The framework addresses the operational modes of grid-connected and islanded microgrids, emphasizing the seamless transition between these modes to ensure a continuous power supply. By leveraging local distributed energy resources, the microgrid aims to reduce dependence on the main transmission grid while enhancing resilience and reliability. The proposed planning framework not only eases the economic burden of constructing renewable energy sources but also aids distribution utilities in maximizing local resources to achieve sustainable energy goals. Through a detailed network analysis and modeling, the framework provides a robust foundation for optimizing the energy mix and enhancing the overall system performance. This research contributes to advancing microgrid technology as a key driver towards achieving UN Sustainable Development Goals, particularly in promoting clean and affordable energy access.
Keywords