Scientific Reports (Sep 2021)
Noise reduction by adaptive-SIN filtering for retinal OCT images
Abstract
Abstract Optical coherence tomography (OCT) images is widely used in ophthalmic examination, but their qualities are often affected by noises. Shearlet transform has shown its effectiveness in removing image noises because of its edge-preserving property and directional sensitivity. In the paper, we propose an adaptive denoising algorithm for OCT images. The OCT noise is closer to the Poisson distribution than the Gaussian distribution, and shearlet transform assumes additive white Gaussian noise. We hence propose a square-root transform to redistribute the OCT noise. Different manufacturers and differences between imaging objects may influence the observed noise characteristics, which make predefined thresholding scheme ineffective. We propose an adaptive 3D shearlet image filter with noise-redistribution (adaptive-SIN) scheme for OCT images. The proposed adaptive-SIN is evaluated on three benchmark datasets using quantitative evaluation metrics and subjective visual inspection. Compared with other algorithms, the proposed algorithm better removes noise in OCT images and better preserves image details, significantly outperforming in terms of both quantitative evaluation and visual inspection. The proposed algorithm effectively transforms the Poisson noise to Gaussian noise so that the subsequent shearlet transform could optimally remove the noise. The proposed adaptive thresholding scheme optimally adapts to various noise conditions and hence better remove the noise. The comparison experimental results on three benchmark datasets against 8 compared algorithms demonstrate the effectiveness of the proposed approach in removing OCT noise.