Diagnostics (Sep 2024)

Improving Shape-Sensing Robotic-Assisted Bronchoscopy Outcomes with Mobile Cone-Beam Computed Tomography Guidance

  • Sami I. Bashour,
  • Asad Khan,
  • Juhee Song,
  • Gouthami Chintalapani,
  • Gerhard Kleinszig,
  • Bruce F. Sabath,
  • Julie Lin,
  • Horiana B. Grosu,
  • Carlos A. Jimenez,
  • Georgie A. Eapen,
  • David E. Ost,
  • Mona Sarkiss,
  • Roberto F. Casal

DOI
https://doi.org/10.3390/diagnostics14171955
Journal volume & issue
Vol. 14, no. 17
p. 1955

Abstract

Read online

Background: Computed tomography to body divergence (CTBD) is one of the main barriers to bronchoscopic techniques for the diagnosis of peripherally located lung nodules. Cone-beam CT (CBCT) guidance is being rapidly adopted to correct for this phenomenon and to potentially increase diagnostic outcomes. In this trial, we hypothesized that the addition of mobile CBCT (m-CBCT) could improve the rate of tool in lesion (TIL) and the diagnostic yield of shape-sensing robotic-assisted bronchoscopy (SS-RAB). Methods: This was a prospective, single-arm study, which enrolled patients with peripheral lung nodules of 1–3 cm and compared the rate of TIL and the diagnostic yield of SS-RAB alone and combined with mCBCT. Results: A total of 67 subjects were enrolled, the median nodule size was 1.7 cm (range, 0.9–3 cm). TIL was achieved in 23 patients (34.3%) with SS-RAB alone, and 66 patients (98.6%) with the addition of mCBCT (p p 2. Conclusions: The addition of mCBCT guidance to SS-RAB allows bronchoscopists to compensate for CTBD, leading to an increase in TIL and diagnostic yield, with acceptable radiation exposure.

Keywords