Advances in Mechanical Engineering (Jun 2023)
New criteria for wrapper feature selection to enhance bearing fault classification
Abstract
Classification is a critical task in many fields, including signal processing and data analysis. The accuracy and stability of classification results can be improved by selecting the most relevant features from the data. In this paper, a new criterion for feature selection using wrapper method is proposed, which is based on the evaluation of the classification results according to the accuracy and stability (standard deviation) of each class and the number of selected features. The proposed method is evaluated using Random Forest (RF) and Ant Colony Optimization (ACO) algorithms on a benchmark dataset. Results show that the proposed method outperforms classical feature selection methods in terms of accuracy and stability of classification results, especially for the difficult-to-classify combined damage class. This study demonstrates the effectiveness of the proposed new wrapper feature selection criterion to improve the performance of classification algorithms with higher stability (STD: C1 = 0.5, C2 = 0.8, C3 = 0.6, C4 = 1.8) and better accuracy (average C1 = 98.5%, C2 = 96.6%, C3 = 9.5%, C4 = 93) for the both; the statoric current and the vibration signal compared to other techniques. Machine learning methods had proven their efficiency in time-varying machines fault diagnosis when taking vibration signals and statoric currents extracted features as inputs. However, the use of the both demonstrated a higher robustness and a remarkable superiority.