European Physical Journal C: Particles and Fields (Dec 2023)
Measurement of the double- $$\varvec{\beta }$$ β decay of $$\varvec{^{150}}$$ 150 Nd to the 0 $$\varvec{^+_1}$$ 1 + excited state of $$\varvec{^{150}}$$ 150 Sm in NEMO-3
- X. Aguerre,
- R. Arnold,
- C. Augier,
- A. S. Barabash,
- A. Basharina-Freshville,
- S. Blondel,
- S. Blot,
- M. Bongrand,
- R. Breier,
- V. Brudanin,
- J. Busto,
- A. Bystryakov,
- A. J. Caffrey,
- C. Cerna,
- J. P. Cesar,
- M. Ceschia,
- E. Chauveau,
- A. Chopra,
- L. Dawson,
- D. Duchesneau,
- D. Durand,
- J. J. Evans,
- R. Flack,
- P. Franchini,
- X. Garrido,
- C. Girard-Carillo,
- B. Guillon,
- P. Guzowski,
- M. Hoballah,
- R. Hodák,
- P. Hubert,
- M. H. Hussain,
- S. Jullian,
- A. Klimenko,
- O. Kochetov,
- S. I. Konovalov,
- F. Koňařík,
- T. Křižák,
- D. Lalanne,
- K. Lang,
- Y. Lemière,
- P. Li,
- P. Loaiza,
- G. Lutter,
- M. Macko,
- F. Mamedov,
- C. Marquet,
- F. Mauger,
- A. Minotti,
- B. Morgan,
- I. Nemchenok,
- M. Nomachi,
- F. Nowacki,
- H. Ohsumi,
- G. Oliviéro,
- V. Palušová,
- C. Patrick,
- F. Perrot,
- M. Petro,
- A. Pin,
- F. Piquemal,
- P. Povinec,
- S. Pratt,
- P. Přidal,
- W. S. Quinn,
- Y. A. Ramachers,
- A. Remoto,
- J. L. Reyss,
- C. L. Riddle,
- E. Rukhadze,
- R. Saakyan,
- A. Salamatin,
- R. Salazar,
- X. Sarazin,
- J. Sedgbeer,
- Yu. Shitov,
- L. Simard,
- F. Šimkovic,
- A. Smetana,
- A. Smolnikov,
- S. Söldner-Rembold,
- I. Štekl,
- J. Suhonen,
- G. Szklarz,
- H. Tedjditi,
- J. Thomas,
- V. Timkin,
- V. I. Tretyak,
- V. I. Tretyak,
- V. I. Umatov,
- I. Vanushin,
- Y. Vereshchaka,
- V. Vorobel,
- D. Waters,
- F. Xie
Affiliations
- X. Aguerre
- Université de Bordeaux, CNRS/IN2P3, LP2i Bordeaux, UMR 5797
- R. Arnold
- Université Louis Pasteur, CNRS/IN2P3, IPHC
- C. Augier
- Université Paris-Saclay, CNRS, IJCLab
- A. S. Barabash
- Affiliated with a member institute of the NEMO-3 collaboration
- A. Basharina-Freshville
- University College London
- S. Blondel
- Université Paris-Saclay, CNRS, IJCLab
- S. Blot
- University of Manchester
- M. Bongrand
- Université Paris-Saclay, CNRS, IJCLab
- R. Breier
- Faculty of Mathematics, Physics and Informatics, Comenius University
- V. Brudanin
- Affiliated with a member institute of the NEMO-3 collaboration
- J. Busto
- Aix-Marseille Université, CNRS, CPPM
- A. Bystryakov
- Affiliated with a member institute of the NEMO-3 collaboration
- A. J. Caffrey
- Idaho National Laboratory
- C. Cerna
- Université de Bordeaux, CNRS/IN2P3, LP2i Bordeaux, UMR 5797
- J. P. Cesar
- University of Texas at Austin
- M. Ceschia
- University College London
- E. Chauveau
- Université de Bordeaux, CNRS/IN2P3, LP2i Bordeaux, UMR 5797
- A. Chopra
- University College London
- L. Dawson
- University College London
- D. Duchesneau
- Université de Savoie, CNRS/IN2P3, LAPP, UMR 5814
- D. Durand
- Normandie Université, ENSICAEN, UNICAEN, CNRS/IN2P3, LPC Caen
- J. J. Evans
- University of Manchester
- R. Flack
- University College London
- P. Franchini
- Imperial College London
- X. Garrido
- Université Paris-Saclay, CNRS, IJCLab
- C. Girard-Carillo
- Université Paris-Saclay, CNRS, IJCLab
- B. Guillon
- Normandie Université, ENSICAEN, UNICAEN, CNRS/IN2P3, LPC Caen
- P. Guzowski
- University of Manchester
- M. Hoballah
- Université Paris-Saclay, CNRS, IJCLab
- R. Hodák
- Institute of Experimental and Applied Physics, Czech Technical University in Prague
- P. Hubert
- Université de Bordeaux, CNRS/IN2P3, LP2i Bordeaux, UMR 5797
- M. H. Hussain
- University College London
- S. Jullian
- Université Paris-Saclay, CNRS, IJCLab
- A. Klimenko
- Affiliated with a member institute of the NEMO-3 collaboration
- O. Kochetov
- Affiliated with a member institute of the NEMO-3 collaboration
- S. I. Konovalov
- Affiliated with a member institute of the NEMO-3 collaboration
- F. Koňařík
- Institute of Experimental and Applied Physics, Czech Technical University in Prague
- T. Křižák
- Institute of Experimental and Applied Physics, Czech Technical University in Prague
- D. Lalanne
- Université Paris-Saclay, CNRS, IJCLab
- K. Lang
- University of Texas at Austin
- Y. Lemière
- Normandie Université, ENSICAEN, UNICAEN, CNRS/IN2P3, LPC Caen
- P. Li
- University of Edinburgh
- P. Loaiza
- Université Paris-Saclay, CNRS, IJCLab
- G. Lutter
- Université de Bordeaux, CNRS/IN2P3, LP2i Bordeaux, UMR 5797
- M. Macko
- Institute of Experimental and Applied Physics, Czech Technical University in Prague
- F. Mamedov
- Institute of Experimental and Applied Physics, Czech Technical University in Prague
- C. Marquet
- Université de Bordeaux, CNRS/IN2P3, LP2i Bordeaux, UMR 5797
- F. Mauger
- Normandie Université, ENSICAEN, UNICAEN, CNRS/IN2P3, LPC Caen
- A. Minotti
- Université de Savoie, CNRS/IN2P3, LAPP, UMR 5814
- B. Morgan
- University of Warwick
- I. Nemchenok
- Affiliated with a member institute of the NEMO-3 collaboration
- M. Nomachi
- Osaka University
- F. Nowacki
- Université Louis Pasteur, CNRS/IN2P3, IPHC
- H. Ohsumi
- Saga University
- G. Oliviéro
- Normandie Université, ENSICAEN, UNICAEN, CNRS/IN2P3, LPC Caen
- V. Palušová
- Institute of Experimental and Applied Physics, Czech Technical University in Prague
- C. Patrick
- University of Edinburgh
- F. Perrot
- Université de Bordeaux, CNRS/IN2P3, LP2i Bordeaux, UMR 5797
- M. Petro
- Faculty of Mathematics, Physics and Informatics, Comenius University
- A. Pin
- Université de Bordeaux, CNRS/IN2P3, LP2i Bordeaux, UMR 5797
- F. Piquemal
- Université de Bordeaux, CNRS/IN2P3, LP2i Bordeaux, UMR 5797
- P. Povinec
- Faculty of Mathematics, Physics and Informatics, Comenius University
- S. Pratt
- University of Edinburgh
- P. Přidal
- Institute of Experimental and Applied Physics, Czech Technical University in Prague
- W. S. Quinn
- University College London
- Y. A. Ramachers
- University of Warwick
- A. Remoto
- Université de Savoie, CNRS/IN2P3, LAPP, UMR 5814
- J. L. Reyss
- LSCE, CNRS
- C. L. Riddle
- Idaho National Laboratory
- E. Rukhadze
- Institute of Experimental and Applied Physics, Czech Technical University in Prague
- R. Saakyan
- University College London
- A. Salamatin
- Affiliated with a member institute of the NEMO-3 collaboration
- R. Salazar
- University of Texas at Austin
- X. Sarazin
- Université Paris-Saclay, CNRS, IJCLab
- J. Sedgbeer
- Imperial College London
- Yu. Shitov
- Institute of Experimental and Applied Physics, Czech Technical University in Prague
- L. Simard
- Université Paris-Saclay, CNRS, IJCLab
- F. Šimkovic
- Faculty of Mathematics, Physics and Informatics, Comenius University
- A. Smetana
- Institute of Experimental and Applied Physics, Czech Technical University in Prague
- A. Smolnikov
- Affiliated with a member institute of the NEMO-3 collaboration
- S. Söldner-Rembold
- University of Manchester
- I. Štekl
- Institute of Experimental and Applied Physics, Czech Technical University in Prague
- J. Suhonen
- Jyväskylä University
- G. Szklarz
- Université Paris-Saclay, CNRS, IJCLab
- H. Tedjditi
- Aix-Marseille Université, CNRS, CPPM
- J. Thomas
- University College London
- V. Timkin
- Affiliated with a member institute of the NEMO-3 collaboration
- V. I. Tretyak
- Institute for Nuclear Research of NASU
- V. I. Tretyak
- Affiliated with a member institute of the NEMO-3 collaboration
- V. I. Umatov
- Affiliated with a member institute of the NEMO-3 collaboration
- I. Vanushin
- Affiliated with a member institute of the NEMO-3 collaboration
- Y. Vereshchaka
- Université Paris-Saclay, CNRS, IJCLab
- V. Vorobel
- Faculty of Mathematics and Physics, Charles University in Prague
- D. Waters
- University College London
- F. Xie
- University College London
- DOI
- https://doi.org/10.1140/epjc/s10052-023-12227-x
- Journal volume & issue
-
Vol. 83,
no. 12
pp. 1 – 12
Abstract
Abstract The NEMO-3 results for the double- $$\beta $$ β decay of $$^{150}$$ 150 Nd to the 0 $$^+_1$$ 1 + and 2 $$^+_1$$ 1 + excited states of $$^{150}$$ 150 Sm are reported. The data recorded during 5.25 year with 36.6 g of the isotope $$^{150}$$ 150 Nd are used in the analysis. The signal of the $$2\nu \beta \beta $$ 2 ν β β transition to the 0 $$^+_1$$ 1 + excited state is detected with a statistical significance exceeding 5 $$\sigma $$ σ . The half-life is measured to be $$T_{1/2}^{2\nu \beta \beta }(0^+_1) = \left[ 1.11 ^{+0.19}_{-0.14} \,\left( \hbox {stat}\right) ^{+0.17}_{-0.15}\,\left( \hbox {syst}\right) \right] \times 10^{20}$$ T 1 / 2 2 ν β β ( 0 1 + ) = 1 . 11 - 0.14 + 0.19 stat - 0.15 + 0.17 syst × 10 20 year, which is the most precise value that has been measured to date. 90% confidence-level limits are set for the other decay modes. For the $$2\nu \beta \beta $$ 2 ν β β decay to the 2 $$^+_1$$ 1 + level the limit is $$T^{2\nu \beta \beta }_{1/2}(2^+_1) > 2.42 \times 10^{20}~\hbox {year}$$ T 1 / 2 2 ν β β ( 2 1 + ) > 2.42 × 10 20 year . The limits on the $$0\nu \beta \beta $$ 0 ν β β decay to the 0 $$^+_1$$ 1 + and 2 $$^+_1$$ 1 + levels of $$^{150}$$ 150 Sm are significantly improved to $$T_{1/2}^{0\nu \beta \beta }(0^+_1) > 1.36 \times 10^{22}~\hbox {year}$$ T 1 / 2 0 ν β β ( 0 1 + ) > 1.36 × 10 22 year and $$T_{1/2}^{0\nu \beta \beta }(2^+_1) > 1.26 \times 10^{22}~\hbox {year}$$ T 1 / 2 0 ν β β ( 2 1 + ) > 1.26 × 10 22 year .