Sensors (Aug 2024)
RLI-SLAM: Fast Robust Ranging-LiDAR-Inertial Tightly-Coupled Localization and Mapping
Abstract
Simultaneous localization and mapping (SLAM) is an essential component for smart robot operations in unknown confined spaces such as indoors, tunnels and underground. This paper proposes a novel tightly-coupled ranging-LiDAR-inertial simultaneous localization and mapping framework, namely RLI-SLAM, which is designed to be high-accuracy, fast and robust in the long-term fast-motion scenario, and features two key innovations. The first one is tightly fusing the ultra-wideband (UWB) ranging and the inertial sensor to prevent the initial bias and long-term drift of the inertial sensor so that the point cloud distortion of the fast-moving LiDAR can be effectively compensated in real-time. This enables high-accuracy and robust state estimation in the long-term fast-motion scenario, even with a single ranging measurement. The second one is deploying an efficient loop closure detection module by using an incremental smoothing factor graph approach, which seamlessly integrates into the RLI-SLAM system, and enables high-precision mapping in a challenging environment. Extensive benchmark comparisons validate the superior accuracy of the proposed new state estimation and mapping framework over other state-of-the-art systems at a low computational complexity, even with a single ranging measurement and/or in a challenging environment.
Keywords