BMC Cancer (Jun 2021)

Identification of novel hub genes associated with gastric cancer using integrated bioinformatics analysis

  • Xiao-Qing Lu,
  • Jia-Qian Zhang,
  • Sheng-Xiao Zhang,
  • Jun Qiao,
  • Meng-Ting Qiu,
  • Xiang-Rong Liu,
  • Xiao-Xia Chen,
  • Chong Gao,
  • Huan-Hu Zhang

DOI
https://doi.org/10.1186/s12885-021-08358-7
Journal volume & issue
Vol. 21, no. 1
pp. 1 – 17

Abstract

Read online

Abstract Background Gastric cancer (GC) is one of the most common solid malignant tumors worldwide with a high-recurrence-rate. Identifying the molecular signatures and specific biomarkers of GC might provide novel clues for GC prognosis and targeted therapy. Methods Gene expression profiles were obtained from the ArrayExpress and Gene Expression Omnibus database. Differentially expressed genes (DEGs) were picked out by R software. The hub genes were screened by cytohubba plugin. Their prognostic values were assessed by Kaplan–Meier survival analyses and the gene expression profiling interactive analysis (GEPIA). Finally, qRT-PCR in GC tissue samples was established to validate these DEGs. Results Total of 295 DEGs were identified between GC and their corresponding normal adjacent tissue samples in E-MTAB-1440, GSE79973, GSE19826, GSE13911, GSE27342, GSE33335 and GSE56807 datasets, including 117 up-regulated and 178 down-regulated genes. Among them, 7 vital upregulated genes (HMMR, SPP1, FN1, CCNB1, CXCL8, MAD2L1 and CCNA2) were selected. Most of them had a significantly worse prognosis except SPP1. Using qRT-PCR, we validated that their transcriptions in our GC tumor tissue were upregulated except SPP1 and FN1, which correlated with tumor relapse and predicts poorer prognosis in GC patients. Conclusions We have identified 5 upregulated DEGs (HMMR, CCNB1, CXCL8, MAD2L1, and CCNA2) in GC patients with poor prognosis using integrated bioinformatical methods, which could be potential biomarkers and therapeutic targets for GC treatment.

Keywords