Cell Reports (Feb 2019)
Blimp1 Prevents Methylation of Foxp3 and Loss of Regulatory T Cell Identity at Sites of Inflammation
Abstract
Summary: Foxp3+ regulatory T (Treg) cells restrict immune pathology in inflamed tissues; however, an inflammatory environment presents a threat to Treg cell identity and function. Here, we establish a transcriptional signature of central nervous system (CNS) Treg cells that accumulate during experimental autoimmune encephalitis (EAE) and identify a pathway that maintains Treg cell function and identity during severe inflammation. This pathway is dependent on the transcriptional regulator Blimp1, which prevents downregulation of Foxp3 expression and “toxic” gain-of-function of Treg cells in the inflamed CNS. Blimp1 negatively regulates IL-6- and STAT3-dependent Dnmt3a expression and function restraining methylation of Treg cell-specific conserved non-coding sequence 2 (CNS2) in the Foxp3 locus. Consequently, CNS2 is heavily methylated when Blimp1 is ablated, leading to a loss of Foxp3 expression and severe disease. These findings identify a Blimp1-dependent pathway that preserves Treg cell stability in inflamed non-lymphoid tissues. : An inflammatory environment threatens the stability of Foxp3+ Treg cells. Garg et al. show that by expressing the transcriptional regulator Blimp1, Treg cells resist the IL-6-driven loss of Foxp3 in inflamed tissues. Blimp1 prevents the methylation and reduced expression of Foxp3 through inhibition of the methyltransferase Dnmt3a. Keywords: regulatory T cells, Blimp1, CNS2, epigenetic regulation, CNS, inflammation, DNA methyltransferases, Foxp3, Interleukin-6