Materials (May 2024)

Non-Equilibrium Long-Wave Infrared HgCdTe Photodiodes: How the Exclusion and Extraction Junctions Work Separately

  • Małgorzata Kopytko,
  • Kinga Majkowycz,
  • Jan Sobieski,
  • Tetiana Manyk,
  • Waldemar Gawron

DOI
https://doi.org/10.3390/ma17112551
Journal volume & issue
Vol. 17, no. 11
p. 2551

Abstract

Read online

The cooling requirement for long-wave infrared detectors still creates significant limitations to their functionality. The phenomenon of minority-carrier exclusion and extraction in narrow-gap semiconductors has been intensively studied for over three decades and used to increase the operating temperatures of devices. Decreasing free carrier concentrations below equilibrium values by a stationary non-equilibrium depletion of the device absorber leads to a suppression of Auger generation. In this paper, we focus on analyzing exclusion and extraction effects separately, based on experimental and theoretical results for a HgCdTe photodiode. To carry out an experiment, the n+-P+-π-N+ heterostructure was grown by metal organic chemical vapor deposition on CdTe-buffered GaAs substrate. In order to separate the extraction and exclusive junctions, three different devices were evaluated: (1) a detector etched through the entire n+-P+-π-N+ heterostructure, (2) a detector made of the P+-π photoconductive junction and (3) a detector made of the π-N+ photodiode junction. For each device, the dark current density–voltage characteristics were measured at a high-temperature range, from 195 K to 300 K. Next, the carrier concentration distribution across the entire heterostructure and individual junctions was calculated using the APSYS simulation program. It was shown that when the n+-P+-π-N+ photodiode is reverse biased, the electron concentration in the π absorber drops below its thermal equilibrium value, due to the exclusion effect at the P+-π junction and the extraction effect at the π-N+ junction. To maintain the charge neutrality, the hole concentration is also reduced below the equilibrium value and reaches the absorber doping level (NA), leading to the Auger generation rate’s reduction by a factor of 2ni/NA, where ni is the intrinsic carrier concentration. Our experiment conducted for three separate detectors showed that the exclusion P+-π photoconductive junction has the most significant effect on the Auger suppression—the majority of the hole concentration drops to the doping level not only at the P+-π interface but also deep inside the π absorber.

Keywords