Energies (Oct 2022)
Characterization of Aerodynamics of Small Wind Turbine Blade for Enhanced Performance and Low Cost of Energy
Abstract
During a turbine’s lifetime, minimizing the cost of power production should be the primary aim in addition to attaining high technical efficiency. Thus, this paper was aimed at enhancing the aerodynamic efficiency of a site-specific small wind turbine considering the cost of energy as one of the design parameters. The wind distribution of a specific site was employed to characterize the wind using the Weibull distribution method. The aerodynamics of a typical 5 kW wind turbine blade were investigated by implementing a blade element method (BEM) using a MATLAB code that applied the advancements and improvements with different modifications and which was validated by engaging computational fluid dynamics (Ansys-Fluent). The optimal pitch angle was then employed to further promote the performance characteristics of the blade. The cost of energy was reformulated in terms of rated power considering a cost variation of the main components that deviates with the rated power. Accordingly, the performance parameters were investigated against a varying rated power and the relative cost of energy, achieving a maximum power coefficient of 55.37% at a lower cost of energy. Moreover, annual energy production of approximately 18 MWh with a corresponding capacity factor of approximately 41% was achieved at a lower cost of energy. These findings demonstrate that the selected modelling, analysis procedures, and modifications enhance the aerodynamic performance characteristics and lower the cost of energy of the small wind turbine blade, which promotes the affordability and energy harnessing capability of small wind turbines.
Keywords