Energies (Dec 2021)

Effects of Reversed Shock Waves on Operation Mode in H<sub>2</sub>/O<sub>2</sub> Rotating Detonation Chambers

  • Yanliang Chen,
  • Xiangyang Liu,
  • Jianping Wang

DOI
https://doi.org/10.3390/en14248296
Journal volume & issue
Vol. 14, no. 24
p. 8296

Abstract

Read online

Operation modes are an important topic in the research of Rotating Detonation Chamber (RDC) as it can affect the stability of RDC. However, they have not been discussed in detail due to the limitation of measurement means in experiments. The aim of this research is to investigate the mechanism of different operation modes by numerical simulation. In this paper, a numerical simulation for RDCs with separate injectors is carried out. Different operation modes and mode switching are analyzed. There is a series of reversed shock waves in the flow field. It was found that they have great effects on operation mode and mode switching in RDCs. A reversed shock wave can transit into a detonation wave after passing through isolated fresh gas region where fresh gas and burnt gas distribute alternatively. This shock-to-detonation transition (SDT) phenomenon will influence the ignition process, contra-rotating waves mode and mode switching in RDCs. SDT makes the number of detonation wave increases, resulting in multi-wave mode with one ignition. Moreover, quenching of detonation waves after collision and SDT after passing through isolated fresh gas region are the mechanism of contra-rotating waves mode in RDCs with separate injectors. In addition, when the inlet total temperature increases, a shock wave is easier to transit into a detonation wave. The distance that a shock wave travels before SDT decreases when temperature increases. This will result in mode switching. Therefore, SDT determines that there is a lower bound of detonation wave number.

Keywords