Journal of Nanobiotechnology (Oct 2009)
Real time <it>in vitro </it>studies of doxorubicin release from PHEMA nanoparticles
Abstract
Abstract Background Many anticancer agents have poor water solubility and therefore the development of novel delivery systems for such molecules has received significant attention. Nanocarriers show great potential in delivering therapeutic agents into the targeted organs or cells and have recently emerged as a promising approach to cancer treatments. The aim of this study was to prepare and use poly-2-hydroxyethyl methacrylate (PHEMA) nanoparticles for the controlled release of the anticancer drug doxorubicin. Results PHEMA nanoparticles have been synthesized and characterized using FTIR and scanning electron microscopy (SEM), particle size analysis and surface charge measurements. We also studied the effects of various parameters such as percent loading of drugs, chemical architecture of the nanocarriers, pH, temperature and nature of the release media on the release profiles of the drug. The chemical stability of doxorubicin in PBS was assessed at a range of pH. Conclusion Suspension polymerization of 2-hydroxyethyl methacrylate (HEMA) results in the formation of swellable nanoparticles of defined composition. PHEMA nanoparticles can potentially be used for the controlled release of the anticancer drug doxorubicin.