Agronomy (Aug 2021)

Modeling Natural Light Availability in Skyscraper Farms

  • Michael Eaton,
  • Kale Harbick,
  • Timothy Shelford,
  • Neil Mattson

DOI
https://doi.org/10.3390/agronomy11091684
Journal volume & issue
Vol. 11, no. 9
p. 1684

Abstract

Read online

Lighting is a major component of energy consumption in controlled environment agriculture (CEA) operations. Skyscraper farms (multilevel production in buildings with transparent glazing) have been proposed as alternatives to greenhouse or plant factories (opaque warehouses) to increase space-use efficiency while accessing some natural light. However, there are no previous models on natural light availability and distribution in skyscraper farms. This study employed climate-based daylight modeling software and the Typical Meteorological Year (TMY) dataset to investigate the effects of building geometry and context shading on the availability and spatial distribution of natural light in skyscraper farms in Los Angeles (LA) and New York City (NYC). Electric energy consumption for supplemental lighting in 20-storey skyscraper farms to reach a daily light integral target was calculated using simulation results. Natural lighting in our baseline skyscraper farms without surrounding buildings provides 13% and 15% of the light required to meet a target of 17 mol·m−2·day−1. More elongated buildings may meet up to 27% of the lighting requirements with natural light. However, shading from surrounding buildings can reduce available natural light considerably; in the worst case, natural light only supplies 5% of the lighting requirements. Overall, skyscraper farms require between 4 to 11 times more input for lighting than greenhouses per crop canopy area in the same location. We conclude that the accessibility of natural light in skyscraper farms in dense urban settings provides little advantage over plant factories.

Keywords