Вісник Національного технічного університету "ХПÌ": Системний аналіз, управління та інформаційні технології (Jul 2021)

ТЕХНОЛОГІЯ ВИЗНАЧЕННЯ ІНФОРМАЦІЙНОГО ПОРЯДКУ ДЕННОГО В ПОТОКАХ НОВИННИХ ДАНИХ

  • Svitlana Petrasova,
  • Nina Khairova,
  • Anastasiia Kolesnyk

DOI
https://doi.org/10.20998/2079-0023.2021.01.14
Journal volume & issue
no. 1 (5)
pp. 86 – 90

Abstract

Read online

З кожним днем обсяг потоків новинних даних зростає, що збільшує інтерес до систем, які дозволяють автоматизувати обробку великих потоків даних. Визначення смислової подібності текстової інформації на основі використання інтелектуальних засобів обробки даних дозволить виділяти спільні інформаційні простори новин. У статті проаналізовані сучасні статистичні метрики для визначення зв’язних фрагментів, зокрема, новинних текстів, що відображають порядок денний (agenda), вказані основні переваги та недоліки. Пропонується інформаційна технологія виявлення спільного інформаційного простору актуальних новин в потоці даних за певний період часу. Технологія включає логіколінгвістичну і дистрибутивно-статистичну модель ідентифікації колокацій. Модель дистрибутивної семантики МІ застосовується на етапі вилучення потенційних колокацій. При цьому регулярні вирази, розроблені відповідно до граматики англійської мови, дозволяють виявляти граматично правильні конструкції. Перевагою розробленої логіко-лінгвістичної моделі формалізації семантико-граматичних характеристик колокацій на основі використання алгебро-предикатних операцій і предиката семантичної еквівалентності, є врахування аналізу як граматичної структури мови, так і смислу слів (колокатів). Тезаурус WordNet застосовується на етапі визначення відношення синонімії між головними і залежними компонентами колокацій. На основі досліджуваного корпусу новинних текстів служб CNN і BBC проведена оцінка ефективності розробленої технології. Аналіз показав, що коефіцієнт точності precision дорівнює 0,96. Застосування запропонованої технології дозволить поліпшити якість обробки потоків новинних повідомлень. Вирішення завдання автоматичного визначення смислової близькості може застосовуватися при виявленні текстів однієї тематики, актуальної інформації, добуванні фактів і усунення смислової неоднозначності та ін. Ключові слова: потік даних, порядок денний, логіко-лінгвістична модель, дистрибутивно-статистична модель, колокація, смислова близькість, WordNet, корпус новинних текстів, precision.