Acoustics (Nov 2020)
Influence of Swept Blades on Low-Order Acoustic Prediction for Axial Fans
Abstract
The low-speed fans used for automotive engine cooling contribute to a significant part of the global noise emitted by the vehicle. A low-order sound-prediction methodology is developed considering the blade sweep-angle effect on the acoustic predictions of the turbulence-impingement and the trailing-edge noise-generating mechanisms. We modeled these through the application of a semianalytical method based on Amiet’s airfoil theory, appropriately adapted via a strip-theory approach accounting for rotation and modified to include the blades forward curvature. Sweep was already shown in the literature to reduce the noise emitted by isolated airfoils, but its effect on rotating machines was not yet well understood. In this study, we show that the effect of the sweep-angle is to globally reduce the emitted noise by the fan and to change the sound distribution of the sources along the blade span. Thus, the sweep-angle must be considered not only because it yields a better comparison with experimental results but also because wrong conclusions on the dominating noise-generating mechanisms can be drawn when this effect is not taken into account. The investigation is finally complemented by a sensitivity analysis focusing on some of the key parameters characterizing the acoustic prediction.
Keywords