Food Chemistry: Molecular Sciences (Jul 2024)

Establishment of rapid extraction and sensitive detection system of trace corn syrup DNA in honey

  • Huixing Ye,
  • Wenqiang Chen,
  • Tao Huang,
  • Junfeng Xu,
  • Xiaofu Wang

Journal volume & issue
Vol. 8
p. 100206

Abstract

Read online

Honey adulteration with exogenous syrup has become a common phenomenon, and current detection techniques that require large instruments are cumbersome and time-consuming. In this study, a simple and efficient method was developed by integrating the rapid extraction of nucleic acids (REMD) and recombinase polymerase amplification (RPA), known as REMD-RPA, for the rapid screening of syrup adulteration in honey. First, a rapid extraction method was developed to rapidly extract corn syrup DNA in five minutes to meet the requirements of PCR and RPA assays. Then, the RPA method for detecting endogenous maize genes (ZssIIb) was established, which could detect 12 copies/μL of the endogenous maize gene within 30 min without cross-reacting with other plant-derived genes. This indicated that the RPA technique exhibited high sensitivity and specificity. Finally, the REMD-RPA detection platform was used to detect different concentrations of corn syrup adulteration, and 1 % adulteration could be detected within 30 min. The 22 commercially available samples were tested to validate the efficacy of this method, and the established RPA was able to detect seven adulterated samples in less than 30 min. Overall, the developed method is rapid, sensitive, and specific, providing technical support for the rapid field detection of honey adulteration and can serve as a reference for developing other field test methods.

Keywords