Journal of Clinical and Translational Science (Apr 2023)

386 A novel truncating variant of EBF2 disrupts human adipocyte differentiation in lipodystrophy syndromes: an example of a discovery from a clinical translational pipeline

  • Maria C. Foss-Freitas,
  • Noel Wys,
  • Miriam Udler,
  • Lynne Pais,
  • Andre Monteiro da Rocha,
  • Ormond A. MacDougald,
  • Elif A. Oral,
  • Tae-Hwa Chun

DOI
https://doi.org/10.1017/cts.2023.422
Journal volume & issue
Vol. 7
pp. 114 – 115

Abstract

Read online

OBJECTIVES/GOALS: Aiming to better understand the molecular pathogenesis of familial partial lipodystrophy (PL), we initiated whole-exome sequencing for our patients with PL syndromes. A novel variant of early B cell factor 2 (EBF2) was identified. Here we report the biological impact of a novel truncating EBF2 variant. METHODS/STUDY POPULATION: Using 3T3-L1 and human primary subcutaneous preadipocytes, we performed loss-of-function and gene rescue experiments. All cells were cultured in DMEM with 10% bovine calf serum (Invitrogen) at 5% CO2. After lentivirus transfection, cells were grown to confluence and then exposed to adipogenesis induction media containing dexamethasone (0.25µM), insulin (1µg/ml) and isobutyl methylxanthine (0.5 mM). Total RNA was extracted using RNeasy Mini Kit (Qiagen) and cDNA was synthesized using IScript (Bio-Rad). Real-time qPCR was performed using TaqMan probes for Pparg and Fabp4, two key adipogenesis markers. RESULTS/ANTICIPATED RESULTS: Patient was found to carry a heterozygous nonsense mutation in exon 6 of EBF2, causing the premature termination of the protein at amino acid position 165. Adipogenesis was significantly suppressed in 3T3L1 cells when endogenous Ebf2 was suppressed with siRNA and lentiviral shRNA. Adipocytes with suppressed Ebf2 expression showed marked reduction of intracellular lipid content and Pparg and Fabp4 expression (>80% reduction). With lentiviral gene transfer, EBF2 fully rescued adipogenic potential, whereas the truncated variant EBF2 did not. Of note, 3T3-L1 cells transfected with the EBF2 variant displayed impaired adipogenesis, suggesting a dominant-negative effect of the EBF2 variant on adipogenesis. We confirmed the dominant effect of the EBF2 variant in human adipocyte differentiation. DISCUSSION/SIGNIFICANCE: Our data suggest that EBF2 is indispensable for adipogenesis. The loss of function and dominant-negative effect of the truncating variant of EBF2 likely plays a pathogenic role in PL. Whole exome sequencing of PL patients and ex-vivo functional analysis help identify novel gene variants and better understand the molecular pathogenesis of PL.