International Journal of Industrial Engineering Computations (Oct 2013)
Experimental investigation on flank wear and tool life, cost analysis and mathematical model in turning hardened steel using coated carbide inserts
Abstract
Turning hardened component with PCBN and ceramic inserts have been extensively used recently and replaces traditional grinding operation. The use of inexpensive multilayer coated carbide insert in hard turning is lacking and hence there is a need to investigate the potential and applicability of such tools in turning hardened steels. An attempt has been made in this paper to have a study on turning hardened AISI 4340 steel (47 ± 1 HRC) using coated carbide inserts (TiN/TiCN/Al2O3/ZrCN) under dry environment. The aim is to assess the tool life of inserts and evolution of flank wear with successive machining time. From experimental investigations, the gradual growth of flank wear for multilayer coated insert indicates steady machining without any premature tool failure by chipping or fracturing. Abrasion is found to be the dominant wear mechanisms in hard turning. Tool life of multilayer coated carbide inserts has been found to be 31 minute and machining cost per part is Rs.3.64 only under parametric conditions chosen i.e. v = 90 m/min, f = 0.05 mm/rev and d = 0.5 mm. The mathematical model shows high determination coefficient, R2 (99%) and fits the actual data well. The predicted flank wear has been found to lie very close to the experimental value at 95% confidence level. This shows the potential and effectiveness of multilayer coated carbide insert used in hard turning applications.
Keywords