BMC Complementary and Alternative Medicine (Jun 2018)

Probiotic fermentation augments the skin anti-photoaging properties of Agastache rugosa through up-regulating antioxidant components in UV-B-irradiated HaCaT keratinocytes

  • Daehyun Shin,
  • Yoonjin Lee,
  • Yu-Hua Huang,
  • Hye-Won Lim,
  • Kyounghee Jang,
  • Dae-Duk Kim,
  • Chang-Jin Lim

DOI
https://doi.org/10.1186/s12906-018-2194-9
Journal volume & issue
Vol. 18, no. 1
pp. 1 – 10

Abstract

Read online

Abstract Background Agastache rugosa (Fisch. & C.A.Mey.) Kuntze (Korean mint) is used to treat diverse types of human disorders in traditional medicine. In recent years, its non-fermented leaf extract (ARE) has been shown to possess protective properties against ultraviolet-B (UV-B) radiation-induced photooxidative stress. The present work aimed to examine whether probiotic bacterial fermentation would potentiate the skin anti-photoaging activity of ARE or not, by comparing the protective properties of ARE and corresponding fermented extract (ARE-F) against UV-B radiation-induced photooxidative stress in HaCaT keratinocytes. Methods ARE-F was produced from ARE by the fermentation with Lactobacillus rhamnosus HK-9, a type of Gram-positive probiotic bacterial strain. Anti-photoaging activities were evaluated by analyzing reactive oxygen species (ROS), promatrix metalloproteinases (proMMPs), total glutathione (GSH) and total superoxide dismutase (SOD) in UV-B-irradiated HaCaT keratinocytes. Antiradical activity was determined using 2,2-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) radical scavenging assay. Results ARE-F contained higher attenuating activity on the UV-B-induced ROS generation than ARE. Similarly, ARE-F was able to diminish the UV-B-induced proMMP-9 and -2 more effectively than ARE. ARE-F displayed higher tendencies to augment the UV-B-reduced total GSH content and SOD activity than ARE. However, there were no significant difference between ARE and ARE-F in ABTS radical scavenging activities. Conclusions The findings suggest that the UV-B radiation-protective activity of ARE is enhanced by probiotic bacterial fermentation, which might improve the therapeutic and cosmetic values of A. rugosa leaves.

Keywords