The Astrophysical Journal Letters (Jan 2023)

Coronal Heating Rate in the Slow Solar Wind

  • Daniele Telloni,
  • Marco Romoli,
  • Marco Velli,
  • Gary P. Zank,
  • Laxman Adhikari,
  • Cooper Downs,
  • Aleksandr Burtovoi,
  • Roberto Susino,
  • Daniele Spadaro,
  • Lingling Zhao,
  • Alessandro Liberatore,
  • Chen Shi,
  • Yara De Leo,
  • Lucia Abbo,
  • Federica Frassati,
  • Giovanna Jerse,
  • Federico Landini,
  • Gianalfredo Nicolini,
  • Maurizio Pancrazzi,
  • Giuliana Russano,
  • Clementina Sasso,
  • Vincenzo Andretta,
  • Vania Da Deppo,
  • Silvano Fineschi,
  • Catia Grimani,
  • Petr Heinzel,
  • John D. Moses,
  • Giampiero Naletto,
  • Marco Stangalini,
  • Luca Teriaca,
  • Michela Uslenghi,
  • Arkadiusz Berlicki,
  • Roberto Bruno,
  • Gerardo Capobianco,
  • Giuseppe E. Capuano,
  • Chiara Casini,
  • Marta Casti,
  • Paolo Chioetto,
  • Alain J. Corso,
  • Raffaella D’Amicis,
  • Michele Fabi,
  • Fabio Frassetto,
  • Marina Giarrusso,
  • Silvio Giordano,
  • Salvo L. Guglielmino,
  • Enrico Magli,
  • Giuseppe Massone,
  • Mauro Messerotti,
  • Giuseppe Nisticò,
  • Maria G. Pelizzo,
  • Fabio Reale,
  • Paolo Romano,
  • Udo Schühle,
  • Sami K. Solanki,
  • Thomas Straus,
  • Rita Ventura,
  • Cosimo A. Volpicelli,
  • Luca Zangrilli,
  • Gaetano Zimbardo,
  • Paola Zuppella,
  • Stuart D. Bale,
  • Justin C. Kasper

DOI
https://doi.org/10.3847/2041-8213/ace112
Journal volume & issue
Vol. 955, no. 1
p. L4

Abstract

Read online

This Letter reports the first observational estimate of the heating rate in the slowly expanding solar corona. The analysis exploits the simultaneous remote and local observations of the same coronal plasma volume, with the Solar Orbiter/Metis and the Parker Solar Probe instruments, respectively, and relies on the basic solar wind magnetohydrodynamic equations. As expected, energy losses are a minor fraction of the solar wind energy flux, since most of the energy dissipation that feeds the heating and acceleration of the coronal flow occurs much closer to the Sun than the heights probed in the present study, which range from 6.3 to 13.3 R _⊙ . The energy deposited to the supersonic wind is then used to explain the observed slight residual wind acceleration and to maintain the plasma in a nonadiabatic state. As derived in the Wentzel–Kramers–Brillouin limit, the present energy transfer rate estimates provide a lower limit, which can be very useful in refining the turbulence-based modeling of coronal heating and subsequent solar wind acceleration.

Keywords