Scientific Reports (Nov 2023)
Scaling laws of failure dynamics on complex networks
Abstract
Abstract The topology of the network of load transmitting connections plays an essential role in the cascading failure dynamics of complex systems driven by the redistribution of load after local breakdown events. In particular, as the network structure is gradually tuned from regular to completely random a transition occurs from the localized to mean field behavior of failure spreading. Based on finite size scaling in the fiber bundle model of failure phenomena, here we demonstrate that outside the localized regime, the load bearing capacity and damage tolerance on the macro-scale, and the statistics of clusters of failed nodes on the micro-scale obey scaling laws with exponents which depend on the topology of the load transmission network and on the degree of disorder of the strength of nodes. Most notably, we show that the spatial structure of damage governs the emergence of the localized to mean field transition: as the network gets gradually randomized failed clusters formed on locally regular patches merge through long range links generating a percolation like transition which reduces the load concentration on the network. The results may help to design network structures with an improved robustness against cascading failure.