Фізико-математична освіта (Sep 2021)

ІНТЕГРОВАНИЙ ПІДХІД ЩОДО ВИЗНАЧЕННЯ ПОХІДНОЇ ФУНКЦІЙ, ЗАДАНИХ НА НЕПЕРЕРВНИХ ТА ДИСКРЕТНИХ МНОЖИНАХ

  • Тетяна Лукашова,
  • Олександр Страх

DOI
https://doi.org/10.31110/2413-1571-2021-030-4-011
Journal volume & issue
Vol. 30, no. 4
pp. 76 – 81

Abstract

Read online

Важливим елементом у підготовці майбутнього фахівця у галузі математики є набуття ним комплексних знань шляхом вивчення узагальнюючих теорій та методів, за допомогою яких визначаються основні фундаментальні поняття. На сьогодні існує цілий ряд таких теорії і їх використання виокремлюється навіть у самостійні наукові напрямки. Застосування елементів узагальнення та порівняння об’єктів вивчення різних математичних дисциплін у навчальному процесі також відіграє важливу роль в побудові міждисциплінарних зв’язків, які у свою чергу сприяють всебічному розвитку майбутнього спеціаліста, реалізації його потенціалу у науковій та професійній діяльності. Формулювання проблеми. Аналізуючи основні положення диференціального та різницевого числень, неважко помітити значну схожість між властивостями похідної та різницевого оператора, що є ключовими характеристиками функцій, які визначені на неперервних та дискретних множинах відповідно. Виявляється, що ця схожість не випадкова, і вказані поняття є частинними випадками поняття дельта-похідної функції. Матеріали і методи. Авторами використовувались наступні методи: системний аналіз наукової, навчальної та методичної літератури; порівняння та синтез теоретичних положень; спостереження за ходом педагогічного процесу; узагальнення власного педагогічного досвіду та досвіду колег з інших закладів вищої освіти. Окрім того, були використані деякі загально математичні та спеціальні методи диференціального та різницевого числень і теорії часових шкал. Результати. У статті розглянуто загальний підхід до вивчення двох фундаментальних математичних понять – поняття похідної та різницевого оператора з точки зору спеціальної теорії часових шкал, а також шляхи використання такого підходу щодо встановлення зв’язків між різними математичними теоріями з метою формування у студентів цілісного уявлення про математичні об’єкти, їх властивості та застосування. Висновки. Встановлення зв’язків між моделями і методами дослідження, які використовуються при вивченні різних математичних дисциплін, що входять у програму підготовки майбутніх фахівців-математиків, дозволяє сформувати у студентів цілісне уявлення про математичні об’єкти, алгоритми та теорії, і як наслідок, робить їх знання системними і практично більш значущими. Це сприяє інтелектуальному розвитку студентів, формуванню в них системних математичних знань, підвищенню рівня математичної грамотності та інтересу до предмету.

Keywords