Journal of Engineering Science and Technology (Feb 2014)
SEISMIC DESIGN OF TWO STOREY REINFORCED CONCRETE BUILDING IN MALAYSIA WITH LOW CLASS DUCTILITY
Abstract
Since Malaysia is not located in active seismic fault zones, majority of buildings in Malaysia had been designed according to BS8110, which not specify any seismic provision. After experienced several tremors originating from neighbouring countries especially from Sumatra, Indonesia, the Malaysian start to ask questions on integrity of existing structures in Malaysia to withstand the earthquake load. The question also arises regarding the economical effect in term of cost of construction if seismic design has to be implemented in Malaysian construction industry. If the cost is increasing, how much the increment and is it affordable? This paper investigated the difference of steel reinforcement and concrete volume required when seismic provision is considered in reinforced concrete design of 2 storey general office building. The regular office building which designed based on BS8110 had been redesigned according to Eurocode 2 with various level of reference peak ground acceleration, agR reflecting Malaysian seismic hazard for ductility class low. Then, the all frames had been evaluated using a total of 800 nonlinear time history analyses considering single and repeated earthquakes to simulate the real earthquake event. It is observed that the level of reference peak ground acceleration, agR and behaviour factor, q strongly influence the increment of total cost. For 2 storey RC buildings built on Soil Type D with seismic consideration, the total cost of material is expected to increase around 6 to 270%, depend on seismic region. In term of seismic performance, the repeated earthquake tends to cause increasing in interstorey drift ratio around 8 to 29% higher compared to single earthquake.