European Physical Journal C: Particles and Fields (Mar 2024)
Gravity-induced entanglement between two massive microscopic particles in curved spacetime: I. The Schwarzschild background
Abstract
Abstract The experiment involving the entanglement of two massive particles through gravitational fields has been devised to discern the quantum attributes of gravity. In this paper, we present a scheme to extend this experiment’s applicability to more generalized curved spacetimes, with the objective of validating universal quantum gravity within broader contexts. Specifically, we direct our attention towards the quantum gravity induced entanglement of masses (QGEM) in astrophysical phenomena, such as particles traversing the interstellar medium. Notably, we ascertain that the gravitational field within curved spacetime can induce observable entanglement between particle pairs in both scenarios, even when dealing with particles significantly smaller than mesoscopic masses. Furthermore, we obtain the characteristic spectra of QGEM across diverse scenarios, shedding light on potential future experimental examinations. This approach not only establishes a more pronounced and extensive manifestation of the quantum influences of gravity compared to the original scheme but also opens avenues for prospective astronomical experiments. These experiments, aligned with our postulates, hold immense advantages and implications for the detection of quantum gravity and can be envisioned for future design.