European Urology Open Science (Aug 2024)

Enhancing Prostate Cancer Detection Accuracy in Magnetic Resonance Imaging–targeted Prostate Biopsy: Optimizing the Number of Cores Taken

  • Fabio Zattoni,
  • Vittorio Fasulo,
  • Veeru Kasivisvanathan,
  • Claudia Kesch,
  • Giancarlo Marra,
  • Alberto Martini,
  • Ugo Falagario,
  • Timo Soeterik,
  • Roderick van den Bergh,
  • Pawel Rajwa,
  • Giorgio Gandaglia

Journal volume & issue
Vol. 66
pp. 16 – 25

Abstract

Read online

Background and objective: The shift toward targeted biopsy (TBx) aims at enhancing prostate cancer (PCa) detection while reducing overdiagnosis of clinically insignificant disease. Despite the improved ability of TBx in identifying clinically significant PCa (csPCa), the optimal number and location of targeted cores remain unclear. This review aims to assess the optimal number of prostate biopsy magnetic resonance imaging (MRI)-targeted cores to detect csPCa. Methods: A narrative literature search was conducted using PubMed, focusing on studies published between January 2014 and January 2024, addressing factors influencing targeted core numbers during prostate biopsy. The search included both retrospective and prospective studies, prioritizing those with substantial sample sizes and employing terms such as “prostate biopsy”, “mpMRI”, “core number”, and “cancer detection”. Key findings and limitations: Two biopsy cores identified csPCa in 55–65% of cases. This detection rate improved to approximately 90% when the number of cores was ≥5. The inclusion of perilesional and systematic biopsies could maximize the detection of csPCa (from 10% to 45%), especially in patients under active surveillance or with prior negative biopsy results, although there is an increase in the overdiagnosis of indolent tumors (from 4% to 20%). Transperineal software-assisted target prostate biopsy may enhance cancer detection, particularly for tumors located at the apex/anterior part of the prostate. Increasing the number of TBx cores may incrementally raise the risk of complications (by 2–14% with each added core) and result in severe pain and significant discomfort for up to 17% and 25% of TBx patients, respectively. However, the overall rate and severity of these complications remain within acceptable limits. Conclusions and clinical implications: The optimal number of cores for targeted prostate biopsies should balance minimizing sampling errors with effective cancer detection and should be tailored to each patient’s unique prostate characteristics. Up to five cores per MRI target may be considered to enhance the detection of csPCa, with adjustments based on factors such as prostate and lesion volume, Prostate Imaging Reporting and Data System, biopsy techniques, complications, patient discomfort, and anxiety. Patient summary: In this report, we found that increasing the number of biopsy cores up to ≥5 improves the detection rates of significant prostate cancer significantly to around 90%. Although inclusion of nearby and systematic biopsies enhances detection, increasing the biopsy count may lead to higher risks of complications and indolent tumors. A customized biopsy approach based on multiple variables could be helpful in determining the appropriate number of targeted biopsies on a case-by-case basis.

Keywords