Journal of Integrative Neuroscience (Jun 2019)

Protein kinase C-ε contributes to a chronic inhibitory effect of IL-1β on voltage-gated sodium channels in mice with febrile seizure

  • Jinli Wang, Fenfen Xu, Yuan Zheng, Xu Cheng, Piaopiao Zhang, Hongyang Zhao

DOI
https://doi.org/10.31083/j.jin.2019.02.145
Journal volume & issue
Vol. 18, no. 2
pp. 173 – 179

Abstract

Read online

This study aimed to understand the role of Interleukin-1β in mouse febrile seizures. To investigate the chronic effects of raised Interleukin-1β on seizures, the sodium currents of hippocampal neurons were recorded by whole-cell voltage clamp. Interleukin-1β inhibited sodium currents in mouse hippocampal neurons and verified that protein kinase C epsilon contributed to the effect of Interleukin-1β exposure. The inhibitory effect was also identified in neurons from a protein kinase C epsilon null mutant mouse. Action potentials were recorded using a ramp depolarizing current. Peak spike depolarization was significantly reduced by Interleukin-1β treatment, and was abolished following the administration of a protein kinase C epsilon inhibitor, εV1-2. However, neither Interleukin-1β nor εV12 had any significant effect on spike thrβ reduced the amplitude of action potentials due to its inhibitory effect on sodium channels. This is hypothesised to decrease the release of presynaptic transmitters of neuroexcitability, thus exerting a neuroprotective role in excitotoxicity. To ascertain the role of protein kinase C epsilon on febrile seizures in vivo, a heated water-bath model was used to identify susceptible mice. It was found that protein kinase C epsilon reduced susceptibility to, and frequency of, febrile seizure onset. This may be related to the neuroprotective effect of Interleukin-1β on hippocampal neurons.

Keywords