Journal of Experimental & Clinical Cancer Research (Feb 2019)
Cross-talk among AFAP1-AS1, ACVR1 and microRNA-384 regulates the stemness of pancreatic cancer cells and tumorigenicity in nude mice
Abstract
Abstract Background Pancreatic cancer (PC) represents one of the most aggressive forms of cancer. The role of long non-coding RNAs (lncRNAs) has been highlighted in various malignancies including PC. The aim of the present study was to investigate the effects associated with actin filament-associated protein 1 antisense RNA 1 (AFAP1-AS1) on the progression of PC and the underlying mechanism. Methods Microarray-based gene expression profiling of PC was performed to identify PC-related lncRNAs, after which the expression of AFAP1-AS1 and cancer stem cell (CSC) markers in PC tissues and cells were determined accordingly. The potential microRNA-384 (miR-384) capable of binding to AFAP1-AS1, in addition to its ability to regulate activin receptor A type I (ACVR1) were analyzed. In order to investigate the effect of the AFAP1-AS1/miR-384/ACVR1 axis on self-renewal ability, tumorigenicity, invasion, migration and stemness of PC cells, shRNA-AFAP1-AS1, miR-384 mimic and inhibitor were cloned into cells. Results High expression of AFAP1-AS1 and ACVR1 with low expression of miR-384 were detected in PC tissues. ACVR1 was determined to be down-regulated when miR-384 was overexpressed, while the inhibition of AFAP1-AS1 decreased its ability to binding competitively to miR-384, resulting in the down-regulation of ACVR1 and enhancing miR-384 expression, ultimately inhibiting the progression of PC. The knockdown of AFAP1-AS1 or overexpression of miR-384 was confirmed to impair PC cell self-renewal ability, tumorigenicity, invasion, migration and stemness. Conclusions Taken together, AFAP1-AS1 functions as an endogenous RNA by competitively binding to miR-384 to regulate ACVR1, thus conferring inhibitory effects on PC cell stemness and tumorigenicity.
Keywords