NeuroImage (Nov 2022)

β-amyloid PET harmonisation across longitudinal studies: Application to AIBL, ADNI and OASIS3

  • Pierrick Bourgeat,
  • Vincent Doré,
  • Samantha C. Burnham,
  • Tammie Benzinger,
  • Duygu Tosun,
  • Shenpeng Li,
  • Manu Goyal,
  • Pamela LaMontagne,
  • Liang Jin,
  • Christopher C Rowe,
  • Michael W. Weiner,
  • John C Morris,
  • Colin L Masters,
  • Jurgen Fripp,
  • Victor L Villemagne

Journal volume & issue
Vol. 262
p. 119527

Abstract

Read online

Introduction: The Centiloid scale was developed to harmonise the quantification of β-amyloid (Aβ) PET images across tracers, scanners, and processing pipelines. However, several groups have reported differences across tracers and scanners even after centiloid conversion. In this study, we aim to evaluate the impact of different pre and post-processing harmonisation steps on the robustness of longitudinal Centiloid data across three large international cohort studies. Methods: All Aβ PET data in AIBL (N = 3315), ADNI (N = 3442) and OASIS3 (N = 1398) were quantified using the MRI-based Centiloid standard SPM pipeline and the PET-only pipeline CapAIBL. SUVR were converted into Centiloids using each tracer's respective transform. Global Aβ burden from pre-defined target cortical regions in Centiloid units were quantified for both raw PET scans and PET scans smoothed to a uniform 8 mm full width half maximum (FWHM) effective smoothness. For Florbetapir, we assessed the performance of using both the standard Whole Cerebellum (WCb) and a composite white matter (WM)+WCb reference region. Additionally, our recently proposed quantification based on Non-negative Matrix Factorisation (NMF) was applied to all spatially and SUVR normalised images. Correlation with clinical severity measured by the Mini-Mental State Examination (MMSE) and effect size, as well as tracer agreement in 11C-PiB-18F-Florbetapir pairs and longitudinal consistency were evaluated. Results: The smoothing to a uniform resolution partially reduced longitudinal variability, but did not improve inter-tracer agreement, effect size or correlation with MMSE. Using a Composite reference region for 18F-Florbetapir improved inter-tracer agreement, effect size, correlation with MMSE, and longitudinal consistency. The best results were however obtained when using the NMF method which outperformed all other quantification approaches in all metrics used. Conclusions: FWHM smoothing has limited impact on longitudinal consistency or outliers. A Composite reference region including subcortical WM should be used for computing both cross-sectional and longitudinal Florbetapir Centiloid. NMF improves Centiloid quantification on all metrics examined.

Keywords