Integrative Cancer Therapies (Jun 2018)

Effects of an Exercise Intervention on Cancer-Related Fatigue and Its Relationship to Markers of Oxidative Stress

  • Chris P. Repka PhD,
  • Reid Hayward PhD

DOI
https://doi.org/10.1177/1534735418766402
Journal volume & issue
Vol. 17

Abstract

Read online

Background: Although the underlying mechanisms of cancer-related fatigue (CRF) are not fully characterized, treatment-associated oxidative stress may play a role. The purpose of this study was to determine the effect of an exercise intervention on the relationship between CRF and oxidative stress. Methods: Upon cessation of radiation or chemotherapy, 8 cancer patients participated in a 10-week exercise intervention (EX), while 7 continued standard care (CON). Blood draws and fatigue questionnaires were administered to cancer patients before and after the intervention as well as to 7 age-matched individuals with no cancer history. Changes in plasma 8-hydroxy-deoxyguanosine (8-OHdG), protein carbonyls, antioxidant capacity, and fatigue were compared between groups. Correlations between CRF and oxidative stress were evaluated. Results: Mean total fatigue scores decreased significantly (5.0 ± 2.2 to 2.6 ± 1.5, P < .05) in EX, but not in CON. Antioxidant capacity significantly increased (+41%; P < .05) and protein carbonyls significantly decreased (−36%; P < .05) in EX, but not in CON. Increases in antioxidant capacity were significantly correlated with reductions in affective ( r = −.49), sensory ( r = −.47), and cognitive fatigue ( r = −.58). Changes in total ( r = .46) and affective ( r = .47) fatigue exhibited significant correlations with changes in 8-OHdG over time, while behavioral ( r = .46) and sensory ( r = .47) fatigue changes were significantly correlated with protein carbonyls. Conclusions: Oxidative stress may be implicated in CRF, while improved antioxidant capacity following an exercise intervention may play a role in mitigating CRF in cancer survivors.