Stem Cell Research & Therapy (May 2019)

Dose-dependent improvement of cardiac function in a swine model of acute myocardial infarction after intracoronary administration of allogeneic heart-derived cells

  • Veronica Crisostomo,
  • Claudia Baez,
  • José Luis Abad,
  • Belén Sanchez,
  • Virginia Alvarez,
  • Rosalba Rosado,
  • Guadalupe Gómez-Mauricio,
  • Olivier Gheysens,
  • Virginia Blanco-Blazquez,
  • Rebeca Blazquez,
  • José Luis Torán,
  • Javier G. Casado,
  • Susana Aguilar,
  • Stefan Janssens,
  • Francisco M. Sánchez-Margallo,
  • Luis Rodriguez-Borlado,
  • Antonio Bernad,
  • Itziar Palacios

DOI
https://doi.org/10.1186/s13287-019-1237-6
Journal volume & issue
Vol. 10, no. 1
pp. 1 – 17

Abstract

Read online

Abstract Background Allogeneic cardiac-derived progenitor cells (CPC) without immunosuppression could provide an effective ancillary therapy to improve cardiac function in reperfused myocardial infarction. We set out to perform a comprehensive preclinical feasibility and safety evaluation of porcine CPC (pCPC) in the infarcted porcine model, analyzing biodistribution and mid-term efficacy, as well as safety in healthy non-infarcted swine. Methods The expression profile of several pCPC isolates was compared with humans using both FACS and RT-qPCR. ELISA was used to compare the functional secretome. One week after infarction, female swine received an intracoronary (IC) infusion of vehicle (CON), 25 × 106 pCPC (25 M), or 50 × 106 pCPC (50 M). Animals were followed up for 10 weeks using serial cardiac magnetic resonance imaging to assess functional and structural remodeling (left ventricular ejection fraction (LVEF), systolic and diastolic volumes, and myocardial salvage index). Statistical comparisons were performed using Kruskal-Wallis and Mann-Whitney U tests. Biodistribution analysis of 18F-FDG-labeled pCPC was also performed 4 h after infarction in a different subset of animals. Results Phenotypic and functional characterization of pCPC revealed a gene expression profile comparable to their human counterparts as well as preliminary functional equivalence. Left ventricular functional and structural remodeling showed significantly increased LVEF 10 weeks after IC administration of 50 M pCPC, associated to the recovery of left ventricular volumes that returned to pre-infarction values (LVEF at 10 weeks was 42.1 ± 10.0% in CON, 46.5 ± 7.4% in 25 M, and 50.2 ± 4.9% in 50 M, p < 0.05). Infarct remodeling was also improved following pCPC infusion with a significantly higher myocardial salvage index in both treated groups (0.35 ± 0.20 in CON; 0.61 ± 0.20, p = 0.04, in 25 M; and 0.63 ± 0.17, p = 0.01, in 50 M). Biodistribution studies demonstrated cardiac tropism 4 h after IC administration, with substantial myocardial retention of pCPC-associated tracer activity (18% of labeled cells in the heart), and no obstruction of coronary flow, indicating their suitability as a cell therapy product. Conclusions IC administration of allogeneic pCPC at 1 week after acute myocardial infarction is feasible, safe, and associated with marked structural and functional benefit. The robust cardiac tropism of pCPC and the paracrine effects on left ventricle post-infarction remodeling established the preclinical bases for the CAREMI clinical trial (NCT02439398).

Keywords