Catalysts (May 2020)

A Review on the Pathways of the Improved Structural Characteristics and Photocatalytic Performance of Titanium Dioxide (TiO<sub>2</sub>) Thin Films Fabricated by the Magnetron-Sputtering Technique

  • Yu-Hsiang Wang,
  • Kazi Hasibur Rahman,
  • Chih-Chao Wu,
  • Kuan-Chung Chen

DOI
https://doi.org/10.3390/catal10060598
Journal volume & issue
Vol. 10, no. 6
p. 598

Abstract

Read online

Titanium dioxide (TiO2) thin films are used for a broad range of applications such as wastewater treatment, photocatalytic degradation activity, water splitting, antibacterial and also in biomedical applications. There is a wide range of synthesis techniques for the deposition of TiO2 thin films, such as chemical vapor deposition (CVD) and physical vapor deposition (PVD), both of which are well known deposition methods. Layer by layer deposition with good homogeneity, even thickness and good adhesive nature is possible by using the PVD technique, with the products being used for photocatalytic applications. This review studies the effects of magnetron sputtering conditions on TiO2 films. This innovative technique can enhance the photocatalytic activity by increasing the thickness of the film higher than any other methods. The main purpose of this article is to review the effects of DC and RF magnetron sputtering conditions on the preparation of TiO2 thin films for photocatalysis. The characteristics of TiO2 films (i.e., structure, composition, and crystallinity) are affected significantly by the substrate type, the sputtering power, the distance between substrate and target, working pressure, argon/oxygen ratio, deposition time, substrate temperature, dopant types, and finally the annealing treatment. The photocatalytic activity and optical properties, including the degree of crystallinity, band gap (Eg), refractive index (n), transmittance (T), and extinction coefficient (k), of TiO2 films are dependent on the above- mentioned film characteristics. Optimal TiO2 films should have a small particle size, a strong degree of crystallinity, a low band gap, a low contact angle, a high refractive index, transmittance, and extinction coefficient. Finally, metallic and nonmetallic dopants can be added to enhance the photocatalytic activity of TiO2 films by narrowing the band gap.

Keywords