Frontiers in Robotics and AI (May 2024)
Computational kinematics of dance: distinguishing hip hop genres
Abstract
Dance plays a vital role in human societies across time and culture, with different communities having invented different systems for artistic expression through movement (genres). Differences between genres can be described by experts in words and movements, but these descriptions can only be appreciated by people with certain background abilities. Existing dance notation schemes could be applied to describe genre-differences, however they fall substantially short of being able to capture the important details of movement across a wide spectrum of genres. Our knowledge and practice around dance would benefit from a general, quantitative and human-understandable method of characterizing meaningful differences between aspects of any dance style; a computational kinematics of dance. Here we introduce and apply a novel system for encoding bodily movement as 17 macroscopic, interpretable features, such as expandedness of the body or the frequency of sharp movements. We use this encoding to analyze Hip Hop Dance genres, in part by building a low-cost machine-learning classifier that distinguishes genre with high accuracy. Our study relies on an open dataset (AIST++) of pose-sequences from dancers instructed to perform one of ten Hip Hop genres, such as Breakdance, Popping, or Krump. For comparison we evaluate moderately experienced human observers at discerning these sequence’s genres from movements alone (38% where chance = 10%). The performance of a baseline, Ridge classifier model was fair (48%) and that of the model resulting from our automated machine learning pipeline was strong (76%). This indicates that the selected features represent important dimensions of movement for the expression of the attitudes, stories, and aesthetic values manifested in these dance forms. Our study offers a new window into significant relations of similarity and difference between the genres studied. Given the rich, complex, and culturally shaped nature of these genres, the interpretability of our features, and the lightweight techniques used, our approach has significant potential for generalization to other movement domains and movement-related applications.
Keywords