Metals (Nov 2020)

Effect of Laser Peening on the Mechanical Properties of Aluminum Alloys Probed by Synchrotron Radiation and X-Ray Free Electron Laser

  • Yuji Sano,
  • Kiyotaka Masaki,
  • Koichi Akita,
  • Kentaro Kajiwara,
  • Tomokazu Sano

DOI
https://doi.org/10.3390/met10111490
Journal volume & issue
Vol. 10, no. 11
p. 1490

Abstract

Read online

Synchrotron radiation (SR) and X-ray free electron laser (XFEL) are indispensable tools not only for the exploration of science but also for the evolution of industry. We used SR and XFEL to elucidate the mechanism and the effects of laser peening without coating (LPwC) which enhances the durability of metallic materials. X-ray diffraction (XRD) employing SR revealed that the residual stress (RS) in the top surface became compressive as the laser pulse irradiation density increased with appropriate overlapping of adjacent laser pulses. SR-based computed tomography (CT) was used to nondestructively reconstruct three-dimensional (3D) images of fatigue cracks in aluminum alloy, revealing that LPwC retarded crack propagation on the surface and inside of the sample. SR-based computed laminography (CL) was applied to friction stir welded (FSWed) aluminum alloy plates to visualize fatigue cracks propagating along the welds. The fatigue crack had complicated shape; however, it became a semi-ellipsoid once projected onto a plane perpendicular to the fatigue loading direction. Ultra-fast XRD using an XFEL was conducted to investigate the dynamic response of aluminum alloy to an impulsive pressure wave simulating the LPwC condition. The diffraction pattern changed from spotty to smooth, implying grain refinement or subgrain formation. Shifts in diffraction angles were also observed, coinciding with the pressure history of laser irradiation. The durations of the dynamic phenomena were less than 1 µs; it may be possible to use high-repetition lasers at frequencies greater than kHz to reduce LPwC processing times.

Keywords