Sensors (Dec 2023)

Knowledge Distillation for Traversable Region Detection of LiDAR Scan in Off-Road Environments

  • Nahyeong Kim,
  • Jhonghyun An

DOI
https://doi.org/10.3390/s24010079
Journal volume & issue
Vol. 24, no. 1
p. 79

Abstract

Read online

In this study, we propose a knowledge distillation (KD) method for segmenting off-road environment range images. Unlike urban environments, off-road terrains are irregular and pose a higher risk to hardware. Therefore, off-road self-driving systems are required to be computationally efficient. We used LiDAR point cloud range images to address this challenge. The three-dimensional (3D) point cloud data, which are rich in detail, require substantial computational resources. To mitigate this problem, we employ a projection method to convert the image into a two-dimensional (2D) image format using depth information. Our soft label-based knowledge distillation (SLKD) effectively transfers knowledge from a large teacher network to a lightweight student network. We evaluated SLKD using the RELLIS-3D off-road environment dataset, measuring the performance with respect to the mean intersection of union (mIoU) and GPU floating point operations per second (GFLOPS). The experimental results demonstrate that SLKD achieves a favorable trade-off between mIoU and GFLOPS when comparing teacher and student networks. This approach shows promise for enabling efficient off-road autonomous systems with reduced computational costs.

Keywords