Opuscula Mathematica (Jan 2013)
Existence results for Dirichlet problems with degenerated p-Laplacian
Abstract
In this article, we prove the existence of entropy solutions for the Dirichlet problem \[(P)\left\{ \begin{array}{ll} & -{\rm div}[{\omega}(x){\vert{\nabla}u\vert}^{p-2}{\nabla}u]= f(x) - {\rm div}(G(x)),\ \ {\rm in} \ \ {\Omega} \\ & u(x)=0, \ \ {\rm in} \ \ {\partial\Omega} \end{array} \right.\] where \(\Omega\) is a bounded open set of \(\mathbb{R}^N\) \( (N \geq 2)\), \(f \in L^1(\Omega)\) and \(G/\omega \in [L^p(\Omega,\omega)]^N\).
Keywords