Heliyon (Jun 2024)

Comparative stress physiological analysis of aluminium stress tolerance of indigenous maize (Zea mays L.) cultivars of eastern Himalaya

  • Naresh Bhukya,
  • Samarendra Hazarika,
  • Krishnappa Rangappa,
  • Dwipendra Thakuria,
  • Rumi Narzari,
  • Supriya Debnath

Journal volume & issue
Vol. 10, no. 11
p. e31570

Abstract

Read online

Yield potential of maize having distinct genetic diversity in Eastern Himalayan Region (EHR) hill ecologies is often limited by Al toxicity caused due to soil acidity. Stress physiological analysis of local check exposed to 0–300 μM Al under sand culture revealed that 150 μM Al as critical and 200 μM Al as tolerable limit. Increase in Al from 0 to 300 μM reduced total chlorophyll, carotenoids by 74.8 % and 44.7 % respectively and enhanced anthocyanin by 35.3 % whereas LA, SLW and SL have reduced by 81.3%, 21.3 % and 47.8 % respectively. R/S ratio was 51.0 and 13.7 % higher at lower Al levels (50 μM and 100 μM) and photosynthetic, transpiration rate and TDM were 62.5 %, 42.9 % and 78.6 % lower at higher Al (300 μM) as compared to control. TRL, RSA, RDW and RV at higher Al (300 μM) were 92.6 %, 98.7 %, 78.7 and 97.5 % lower over control respectively. Root and shoot Al and PUpE at higher Al (300 μM) was 194.0, 69.2 and 830 % higher whereas PUE decreased to 88.5 % over control. Evaluation of 31 indigenous maize cultivars at 0, 150, and 250 μM Al in sand culture, alongside tolerance scoring and assessment, revealed that Megha-9, Megha-10, and MZM-19 exhibits high Al tolerance, Megha-1, MZM-22, and MZM-42 demonstrated moderate tolerance, whereas Uruapara, Sublgarh, and BRL Para were identified as Al-sensitive. Stress physiological parameters like SDW, TDM, TRL, SL and LA contributed 46.02 % of variability to PC1, whereas A, RV, RSA, anthocyanin and Chlorophyll_b, contributed 13.56 % of variability to PC2. Highest values of CMS, SL, LP, LA, TRL and anthocyanin were recorded in cluster I having sensitive cultivars while highest CMS, SL, LA, LP, TRL and RSA were found in cluster II having moderately tolerant cultivars and highest mean values for TRL, RSA, LP, LA, CMS and SL were recorded in cluster III having highly Al stress tolerant cultivars. The traits viz., A, RV, RSA, anthocyanin and Chlorophyll_b, total chlorophyll and TDM were emanated as physio-morphological for assessing Al toxicity stress tolerance in Maize with high divergence values. Tolerant cultivars showing 63.4 % and 22.4 % higher anthocyanin at 150 μM Al and 250 μM Al than moderately tolerant one in acid soil experiment with increased root Al, shoot Al, root P and shoot P by 42.6 %, 11 %, 95.1 % and 34 % respectively were emerged as promising for novel maize improvement under acid soils of EHR.

Keywords