He jishu (Mar 2023)

Formation and kinetics of aluminide coating on 316L stainless steel by pack cementation process

  • WANG Jun,
  • LIU Chaonan,
  • LIANG Chaofei,
  • ZHANG Dongxun,
  • WANG Zhenwei,
  • ZHANG Jing,
  • WANG Wei,
  • JIANG Jinyao

DOI
https://doi.org/10.11889/j.0253-3219.2023.hjs.46.030606
Journal volume & issue
Vol. 46, no. 3
pp. 030606 – 030606

Abstract

Read online

BackgroundPack cementation aluminizing technology is a common method for preparing tritium barrier coatings, and its relative parameters during the preparation process have an important influence on the microstructure of the aluminide layer and the tritium barrier properties of the in-situ oxidized Al2O3 coating.PurposeThis study aims to investigate the effects of pack aluminizing conditions on the microstructure of the Fe-Al layer and analyze the related kinetic analysis of the aluminizing process.MethodsFirst of all, a pack aluminizing process activated by 1 wt% AlCl3 was used to fabricate aluminide coatings on the substrate of 316L stainless steel in the 923 K to 1 173 K range. Then, scanning electron microscope (SEM), energy dispersive spectrometer (EDS), and X-ray diffraction (XRD) were employed to characterize the cross-sectional microstructure and composition of the aluminized layer. Finally, the effects of aluminizing temperature and time on the microstructure and composition of the aluminized layer were analyzed, and the kinetic parameters of the formation of the Fe-Al layer and the relationship between aluminizing time and the thickness of the aluminized layer were further obtained.Results & ConclusionsThe experimental results show that the main phases of the aluminized layer are Fe2Al5 and FeAl with a certain amount of FeAl(Cr,Ni) precipitates. The high aluminizing temperature would accelerate the growth of aluminized layer and lead to the formation of a thick intermediate layer between the substrate and outer aluminized layer above 1 023 K. Simultaneously, extending the aluminizing time could increase the thickness of the Fe-Al layer, but has no effect on the phase composition. The relation between aluminizing temperature and the growth velocity of the Fe-Al layer is in accord with Arrhenius' equation, and the relative activation energy of the aluminizing process is about 79.23 kJ·mol-1. During the process of pack aluminizing, the relationship between the aluminizing time and the Fe-Al coating thickness is h=14.585t1/2+19.514.

Keywords