Folia Neuropathologica (Nov 2023)
Exercise attenuates mitochondrial autophagy and neuronal degeneration in MPTP induced Parkinson’s disease by regulating inflammatory pathway
Abstract
Parkinson’s disease (PD) is a chronic neuronal loss of dopamine and drugs used for its management has several limitations. The present report determines the effect of exercise on mitochondrial autophagy against PD. Parkinson’s disease was induced by 15 doses of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP; 30 mg/kg, i.p.) for 3 weeks, on five consecutive days in a week. Exposure of exercise was provided for 40 min for a period of 2 weeks after PD confirmation. Assessment of behaviour was performed to evaluate the effect of exercise on motor function and cognitive function in PD rats. Levels of reactive oxygen species (ROS) and inflammatory cytokines were assessed in PD rats using enzyme linked immunosorbent assay (ELISA). Expression of myocyte-specific enhancer factor 2D (MEF2D) and NADH dehydrogenase 6 (ND6) was estimated in PD rats. Exposure to exercise ameliorates the altered motor function and cognitive function in PD rats. There was a reduction in ROS and cytokine levels in the brain tissue of the exercise group compared to the negative control group. Exercise ameliorates the altered expression of apoptotic proteins and mRNA expression of MEF2D and ND6 in the brain tissue of MPTP induced PD rats. In conclusion, data of study reveal that exercise protects the mitochondrial autophagy in PD rats by reducing inflammatory cytokines and oxidative stress.
Keywords