Journal of the American Heart Association: Cardiovascular and Cerebrovascular Disease (Aug 2021)
Renal Denervation by Noninvasive Stereotactic Radiotherapy Induces Persistent Reduction of Sympathetic Activity in a Hypertensive Swine Model
Abstract
Background We have previously reported the feasibility of noninvasive stereotactic body radiotherapy (SBRT) as a novel approach for renal denervation. Methods and Results Herein, from a translational point of view, we assessed the antihypertensive effect and chronological evolution of SBRT‐induced renal nerve injury within 6 months in a hypertensive swine model. Hypertension was induced in swine by subcutaneous implantation of deoxycorticosterone acetate pellets in combination with a high‐salt diet. A single dose of 25 Gy with SBRT was delivered for renal denervation in 9 swine within 3.4±1.0 minutes. Blood pressure levels at baseline and 1 and 6 months post‐SBRT were comparable to control (n=5), whereas renal norepinephrine was significantly lower at 6 months (P<0.05). Abdominal computed tomography, performed before euthanasia and renal function assessment, remained normal. Standard semiquantitative histological assessment showed that compared with control (1.4±0.4), renal nerve injury was greater at 1 month post‐SBRT (2.3±0.3) and peaked at 6 months post‐SBRT (3.2±0.8) (P<0.05), along with a higher proportion of active caspase‐3–positive nerves (P<0.05). Moreover, SBRT resulted in continuous dysfunction of renal sympathetic nerves and low level of nerve regeneration in 6 months by immunohistochemistry analysis. Conclusions SBRT delivering 25 Gy for renal denervation was safe and related to sustained reduction of sympathetic activity by aggravating nerve damage and inhibiting nerve regeneration up to 6 months; however, its translation to clinical trial should be cautious because of the negative blood pressure response in the deoxycorticosterone acetate–salt hypertensive swine model.
Keywords